A blog post on performing a k-means clustering analysis using RCaller is also available at
this link.
In the code below, two double arrays, x and y, are created in Java side. These variables are then passed to R. In R side, distance matrix d is calculated. The R function hclust performs the main calculations. Finally, calculated heights of clustering tree and a dendrogram plot are returned to Java. The source code, output text and the returned plot are presented here:
package kmeansrcaller;
import java.io.File;
import rcaller.RCaller;
import rcaller.RCode;
public class SingleLinkageClustering {
public static void main(String[] args) {
RCaller caller = new RCaller();
RCode code = new RCode();
File dendrogram = null;
double[] x = new double[]{1, 2, 3, 4, 5, 10, 20, 30, 40, 50};
double[] y = new double[]{2, 4, 6, 8, 10, 20, 40, 60, 80, 100};
code.addDoubleArray("x", x);
code.addDoubleArray("y", y);
code.addRCode("d <- dist(cbind(x,y))");
code.addRCode("h&<- hclust(d, method=\"single\")");
try {
dendrogram = code.startPlot();
code.addRCode("plot(h)");
code.endPlot();
} catch (Exception e) {
System.out.println("Plot Error: " + e.toString());
}
caller.setRCode(code);
caller.setRscriptExecutable("/usr/bin/Rscript");
caller.runAndReturnResult("h");
System.out.println(caller.getParser().getNames());
if (dendrogram != null) {
code.showPlot(dendrogram);
}
double[] heights = caller.getParser().getAsDoubleArray("height");
for (int i = 0; i < heights.length; i++) {
System.out.println("Height " + i + " = " + heights[i]);
}
}
}
The output is
[merge, height, order, method, call, dist_method]
Height 0 = 2.23606797749979
Height 1 = 2.23606797749979
Height 2 = 2.23606797749979
Height 3 = 2.23606797749979
Height 4 = 11.1803398874989
Height 5 = 22.3606797749979
Height 6 = 22.3606797749979
Height 7 = 22.3606797749979
Height 8 = 22.3606797749979
The screen shot of the plotted graphics is here:
Have a nice read!